The Planets in January 2014

Mercury, the closest planet to the Sun, has returned to the evening sky this month for a brief sojourn. Unfortunately you will need a good clear western horizon to see it. By the 19th it should be about 5 degrees above the south-western horizon and only visible for about 30 minutes after the Sun has set. By the end of January it will be visible for closer to 1 hour after Sunset and by mid February it will no longer visible in the evening sky as it heads off to its inferior conjunction appointment with the Sun. It will return later February as the ‘morning star’ and remain in the morning skies until mid April. An inferior conjunction occurs when the Earth and interior planet are on the same side of the Sun.

Venus started the month as the ‘evening star’ after shining so brightly in the western sky on January 11th it Venus passed between the Earth and the Sun and so had its inferior conjunction with the Sun. It will be come visible as the ‘morning star’ before dawn around January 19/20. A nice photo opportunity for all the morning risers will occur on January 29th when a thin crescent Moon will be above Venus to the south-east in the morning twilight.

Earth: trivia note for the month – on January 4, the Earth was at its closest to the Sun for the year. The Sun was only 147,089,638 km away.

Mars is slowly returning to our evening skies in January. Spending the month in the constellation of Virgo it will rise around 12:30am local summer time and rising earlier each night by around 2 minutes, finishing the month by poking its head up around 11:30pm local summer time. Currently the best time to check it out is still in the early morning sky about an hour before morning twilight. On the 23 and 24th of the month the Moon will be very close to Mars at around 12:30am.

Jupiter is visible most of the night at present. It will spend the month in Gemini. It is clearly the brightest object in the sky rising around 8:30pm. By January 22nd it will be setting at around 4:30am.  Having reached its yearly opposition – when it’s opposite the sun – rising in the east as the sun is setting in the west on January 5th. Even if you have only a small telescope, or a decent pair of binoculars, which you mount to keep steady the four main moons of Jupiter, Io, Europa, Ganymede and Callisto should be visible. These are the moons that were discovered by Galileo. Although all four may not be visible at the same time as they may be hidden as they pass behind the planets. It is always interesting to watch and note their positions over a few hours – just as Galileo did over 400 years ago.

Saturn rises well before the Sun in the constellation of Libra. By mid January it is rising at around 2am and in the early hours of Australia Day, just before sunrise around 5:30am Venus will be visible very low on the Eastern horizon the Moon and Saturn will be very close and higher in the same line in the sky will be Mars. Between Venus and Saturn is a red star known as Antares – the heart of the Scorpion. Antares also means ‘Mars-Like” so don’t let it trick you! Mars is higher than yellow Saturn in the sky and Antares, a star, is much lower. The rings of Saturn currently are open wide when viewed from the Earth, making them a fine sight in a small telescope.

If you have any questions about what you see in the sky or want more information please feel free to contact me – Donna Burton, University of Southern Queensland – Astronomy for Schools Co-ordinator North West NSW 63 John Street, Coonabarabran 2357, phone 6842 4343 or via email and you can check out my blog at


Photo Credits and Caption


Aust_Day_Planets.jpg – Australia Day Morning Planet Parade.

Created in the free planetarium software package – Stellarium. This chart shows you the sky looking East on Australia Day (Jan 26), 2014 at 5:15am AEDST. You will need a good south-eastern horizon but you can see Venus low in the East, the Moon and Saturn and orange-red Mars higher in the sky and to the North.


An update on Comet ISON!

The comet had been visible in the Southern Hemisphere before passing the Sun but since the 19th November it has been very difficult to see as it has risen just before the Sun. After it had passed the Sun it would be rising just after the Sun rise and setting before the Sun set, in the southern hemisphere so hence we would not have been able to see it.

At around 6:44am our time this morning the comet reached perihelion (its closest approach to the Sun) where it broke up and then something continues on – it might just be gravel and dust or there might stay a chunk of rock big enough to stay comet like. But now only time will tell if it is big.  This goes to prove that although we certainly know a lot more about comets than we did before – there is a lot more that we do not know.  Many have pronounced Comet ISON as already being dead and it certainly will not reach the brightness and spectacular display that had been predicted – but as Mark Twain is often quoted: “Rumours of my demise are greatly exaggerated.”  Something emerged from the sun after Comet ISON made its closest approach today. Is it ISON? Both professional and amateur astronomers are analysing images from NASA satellites to learn more about comet’s fate. Northern ground based observers may have to wait until around the 9/10 of December now to see if there is anything to see. But they will not get the amazing views that we were all hoping for.

However, at every single opportunity it could find, Comet ISON has done completely the opposite of what was expected, and it certainly wouldn’t be out of character for this dynamic object to yet again do something remarkable. Even if the comet broke up, it offered a very rare opportunity to see how one of the oldest objects in the solar system interacted with the Sun’s magnetic field and its behaviour in the sun’s magnetic field will help scientists understand more about both comets and the Sun. This  was the first comet in recorded history which has come from so far away and passed so close to the sun, passing the sun at a distance of around 1.6 million kms that has been so well-studied and observed.

So we wait and see, this has been one of the most well observed, followed and commented in social media worldwide. A fleet of spacecraft watched ISON plunge toward the sun, including NASA’s STEREO satellite, the European Space Agency/NASA SOHO spacecraft and the Solar Dynamics Observatory. The Hubble Space Telescope should be able to take a close look in a couple of weeks if it did indeed survive.


The photograph above is from the NASA SOHO Space Telescope’s LASCO C3 camera showing a fragment emerging from the other side of the Sun about 3 hours after perihelion.

The picture below is taken this at 00:42UT 1 December 2013 and shows the remnants of the comet as it leaves the SOHO LASCO C# camera’s field of view.

2012 is turning out to be a landmark year for celestial events!

  • Partial Lunar Eclipse – June 4
  • Transit of Venus – June 56
  • Total Solar Eclipse – November 12 (North Qld)

A Transit of Venus is when Venus passes directly between earth and the sun so that we see the distant planet as a small dot gliding slowly across the face of the sun.  Historically, this rare alignment is how we measured the size of our solar system. For Australians – it is the reason captain James Cook was down this way back in 1769.

The next transit of Venus occurs June 6, 2012. This will be the last transit of Venus to occur in our lifetime. The next will be in 2117.

So: Mark your calendar.  Plan a visit to join us here at Siding Spring Observatory to safely view this rare event.